Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Journal of Medical Physics ; : 88-96, 2009.
Article in Korean | WPRIM | ID: wpr-115853

ABSTRACT

Radiation treatment for skin cancer has recently increased in tomotherapy. It was reported that required dose could be delivered with homogeneous dose distribution to the target without field matching using electron and photon beam. Therapeutic beam of tomotherapy, however, has several different physical characteristic and irradiation of helical beam is involved in the mechanically dynamic factors. Thus verification of skin dose is requisite using independent tools with additional verification method. Modified phantom for dose measurement was developed and skin dose verification was performed using inserted thermoluminescent dosimeters (TLDs) and GafChromic EBT films. As the homogeneous dose was delivered to the region including surface and 6 mm depth, measured dose using films showed about average 2% lower dose than calculated one in treatment planning system. Region indicating about 14% higher and lower absorbed dose was verified on measured dose distribution. Uniformity of dose distribution on films decreased as compared with that of calculated results. Dose variation affected by inhomogeneous material, Teflon, little showed. In regard to the measured dose and its distribution in tomotherapy, verification of skin dose through measurement is required before the radiation treatment for the target located at the curved surface or superficial depth.


Subject(s)
Electrons , Polytetrafluoroethylene , Radiotherapy, Intensity-Modulated , Skin , Skin Neoplasms
2.
Korean Journal of Medical Physics ; : 120-124, 2008.
Article in Korean | WPRIM | ID: wpr-7198

ABSTRACT

In this study, we developed the protopype of QA phantom for image QA including an additional component for image based radiation treatment system. The new phantom considered two main parts: Image quality and fusion accuracy. Image quality part included for daily CT number linearity and spatial resolution, and fusion accuracy part designed to simulate a simple translation-rotation setting. The CT scans of the phantom obtained from conventional CT, MVCT of Tomotherapy unit, and both image sets were satisfied the recommendation of spatial resolution. This phantom was simple and efficient for daily imaging QA, and it is important to provide a new concept of verification of image registration.

SELECTION OF CITATIONS
SEARCH DETAIL